If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+10=19X
We move all terms to the left:
X^2+10-(19X)=0
a = 1; b = -19; c = +10;
Δ = b2-4ac
Δ = -192-4·1·10
Δ = 321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{321}}{2*1}=\frac{19-\sqrt{321}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{321}}{2*1}=\frac{19+\sqrt{321}}{2} $
| 8a-10a=64 | | -1+2(t+3)=5-(t+3) | | -3a+5=a-3 | | -34=-8u+5(u-5) | | 2r=10+34 | | 5w+28=6w-42 | | 125/5=3/n | | −5x−9=-3x-9 | | 4m-6.5;m=2 | | .1x^2-x+1.5=0 | | 13p=36 | | 3x/2+5=12 | | x(x-13)(x+10)=0 | | y/6+5=-17 | | X/2+10=19x | | -7(3x+1)+5x=41 | | 25+c=32 | | 1=-13c | | 11^x=0 | | (Y+6)9=10y | | 2(b+8)=18 | | y/12+3=-16 | | 90=24x-0.8(x^2) | | 45p+5=32-6p | | 3/4x-3=1/2x+2 | | 2(x^2)-70x+225=0 | | -5(x-3)+7x=35 | | 7k=3k-3 | | 52-(3)x=x | | 2=|7b+5| | | E^2x”-3=20 | | 3c=3/20 |